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Strategies for Indirect Computer-Aided Drug Design
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INTRODUCTION

This review is intended to describe some of the methods and procedures used for computer-aided drug
design when the structure of the macromolecular target is unknown, as is the case for CNS active
drugs. Strategies and methods used in computer-aided design of drugs in such instances must be
““indirect,” i.e., focusing on the characterization of the ligands themselves. This situation is different
from one in which the three-dimensional structure of the macromolecular target for a drug is known,
for example, for drugs that are enzyme inhibitors, allowing ‘‘direct’’ characterization of ligand-
receptor interactions. Two qualitatively different ‘‘indirect’” approaches are described here. One,
called 2D-QSAR, is briefly reviewed. It is based on delineating regression relationships between a
specified biological end point and properties of the compounds eliciting it. The other, based on
pharmacophore development, constitutes the main part of this review. Several levels of pharmaco-
phore development are described, which differ in the extent to which they encompass fundamental
molecular properties that are determinants of receptor recognition and activation. The strengths and
limitations of each procedure are discussed and illustrated by examples. Two methods for obtaining
model receptor structures are then briefly described. Both rely on the prior success of the indirect
methods in obtaining ligand properties that modulate receptor recognition and activation. These
emerging capabilities have the potential to bridge the gap between indirect and direct methods of drug
design, since, if successful, the design process can continue in a direct mode using explicit charac-
terization of drug-receptor interactions. Strategies for hypothesis validation and use of hypothesis for
drug design and discovery are also briefly reviewed. The final sections of this review describe specific
computational tools such as molecular mechanics and quantum mechanical methods used to charac-
terize and identify relevant molecular properties and indicate some areas for future development of
computational chemistry methods that could increase its effectiveness in the design of novel drugs.

KEY WORDS: drug design; pharmacophore development; QSAR; molecular mechanics; quantum
mechanics.

such as X-ray crystallography or NMR, or from homology
modeling that uses theoretical tools to deduce the three-

Computers have become powerful tools in all areas of
scientific research. Pharmaceutical and medicinal chemistry
are no exception to the rule. They have profited from the use
of the methods of theoretical chemistry to understand the
structure and mechanism of action of biological systems, as
well as to design new compounds that can be used to further
this understanding or be investigated as potentially useful
therapeutic agents.

The appropriate strategy to use in the design of novel
drugs depends on the available knowledge about the struc-
ture of the macromolecular target. A ‘‘direct’ strategy can
be used if the three-dimensional structure of the binding sites
is known, allowing explicit characterization of ligand—
receptor interactions, for example, for the design of drugs
that are enzyme inhibitors, since there are many enzymes
with known structures (1-3). Such knowledge can be
achieved either from appropriate experimental techniques,
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dimensional (3D) structure of a protein given structural data
for a highly homologous one (4). If the 3D structure of the
macromolecule is not known, then the clues for the design of
new ligands for it are more “‘indirect’’ and are based on the
analysis of the molecular properties of compounds known to
have some interaction with it, resulting in diverse pharma-
cological activities.

In this review, we focus on strategies appropriate for the
design of ligands when the 3D structure of the biological
target is not known as is the case for CNS active drugs. Two
qualitatively different ‘‘indirect’” approaches are described
here. One, called 2D-QSAR, is briefly reviewed. It is based
on delineating regression relationships between a specified
biological end point and properties of the compounds elicit-
ing it. This relationship is then used to predict the activity of
untested compounds at the same end point.

The main part of this review focuses on approaches that
use initial hypothesis development as the basis for drug de-
sign. Several such strategies are described that differ in the
extent to which they encompass fundamental molecular
properties that are determinants of receptor recognition and
activation.
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The overall strategy involved in indirect design of
ligands is summarized in Fig. 1. In any such approach, initial
pharmacological data for hypothesis development must be
obtained for a set of ligands for the system for which novel
compounds are to be designed. The initial data should be
homogeneous, i.e., obtained using uniform protocols and,
ideally, from a single source. Otherwise, the data could have
differences that may be misleading. If the data set contains
only binding data for antagonists, then the hypothesis can
include only molecular requirements for recognition. If the
data set contains binding data only for active compounds,
then the hypothesis will encompass molecular determinants
for both recognition and activation but will not be able to
distinguish between them. Only if the data set contains ag-
onists and antagonists, identified as such by an activation
end point, and that have different affinities for the receptor,
will it be possible for the hypothesis to encompass separate
determinants of recognition and activation. In parallel with
the experimental effort, the techniques of computational
chemistry should be used to calculate molecular properties
of the same compounds. From an analysis of the relationship
between the molecular properties and the pharmacological
profile for each compound, a hypothesis is developed,
which, in turn, permits the selection or design of novel
ligands for the macromolecular target.

The validity of the initial hypothesis of the mechanism
by which the compounds elicit their effect can be verified by
acquisition or synthesis of the compounds selected or de-
signed and their subsequent pharmacological evaluation. If
the compounds tested have the predicted pharmacological
profile, then they could be novel probes of mechanism or
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clinically useful drugs. Alternatively, if the compound does
not have the profile expected, then the results can still be
used to refine working hypothesis.

In the following section of this Review, different ap-
proaches to hypothesis development are described, and their
strengths and limitations are discussed and illustrated by ex-
amples. In the next section, strategies for hypothesis valida-
tion and use of initial hypothesis for drug design and discov-
ery are briefly reviewed.

In the fourth section, two strategies for obtaining model
receptor structures are briefly described. Both rely on the
prior success of the indirect methods in obtaining ligand
properties that modulate receptor recognition and activa-
tion. These emerging capabilities have the potential to bridge
the gap between indirect and direct methods of drug design,
since, if successful, the design process can continue in a
direct mode using explicit characterization of drug-receptor
interactions.

The next part of this Review describes several specific
computational tools, specifically, molecular mechanical, and
quantum mechanical methods used to characterize and iden-
tify relevant molecular properties. Finally, we indicate some
areas for improvement of computational chemistry methods
that could increase their effectiveness when applied to de-
sign of novel compound.

This Review has three aims: (i) to serve as an introduc-
tory guide to how a working hypothesis can be developed if
the 3D structure of the biological target is not known, (ii) to
describe the tools required for such a purpose, and (iii) to
indicate how to proceed to the design of drugs once the
initial hypothesis has been formulated. The literature refer-
enced is by no means exhaustive and it is provided with the
main purpose of providing introductory material to the field.

HYPOTHESIS DEVELOPMENT

2-D QSAR

A typical 2D-QS AR procedure assumes that, under cer-
tain conditions, the relationship between a biological end
point and the molecular properties that determine it can be
described in terms of a linear-free energy equation, for any
congeneric set of drugs (5-7). A typical equation has the
form

lOgA = Ch fhydr(Xh) + Cefelec(Xe) + Cs’fst(Xs)
+ constant

where A is related to either the receptor binding affinity or a
specific biological activity, and each of the terms is a con-
gener property that can affect either receptor recognition or
activation. Typically, hydrophobic (f,,4,), €lectronic (f,..),
and steric (f,,) properties of the ligands are used. Each term
is a function of the corresponding parameter, X, which may
have a linear or quadratic representations.

Although a large number of parameters have been used
in connection with this approach, the most widely used set is
(i) the octanol water partition coefficient for a hydrophobic
term, (i) Taft E, quantities for steric effects, (ili) Hammett
constants to describe electronic effects, and (iv) the molar
refractivity to account for dispersion forces. Since these are
all empirical parameters, this 2D-QSAR or ‘““Hansch’ ap-
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proach has been simple to use and there are abundant ex-
amples of its application (5-7). Regression analysis is used
for a set of compounds with known values of log A and
known values of independent variable until values of the
coefficients of each term are obtained that provide the best
fit to the data.

In many cases, the parameters required for a meaningful
application of the Hansch approach are not available. In
such cases, variations have been formulated that resort to
the use of parameters derived directly from the molecular
topology. The simplest of these, called a Free—Wilson ap-
proach, assumes that structural fragments make additive
contributions to a given biological activity (§-10). If the con-
tribution of each fragment can be assigned, then the biolog-
ical activity for all compounds representing different combi-
nation of the fragments can be estimated by simple addition
of each of their contributions. Thus, the Free-Wilson ap-
proach introduces the concept of chemical structural moi-
eties, at least in its minimum expression. In fact, the Free—
Wilson method can be used with only a few substituents in
many positions or several different substituents in a few po-
sitions, which is not possible with the Hansch approach.
Variations of both of these approaches have been proposed,
including more explicit treatment of the topology of the
structure (11-13).

The 2D-QSAR procedures can be used only to predict a
numerical value of the same property for which the regres-
sion analysis is performed and for compounds closely related
to the original set. They cannot, in general, be used to de-
duce determinants of recognition or activation or to distin-
guish agonists from antagonists.

Pharmacophore Development (14,15)

The two-dimensional QSAR methods do not include in-
formation about the 3D structure of the compounds consid-
ered. Since the binding cavities are spatially constrained re-
gions with specific steric requirements, this missing infor-
mation is vital to the ability of ligands to bind to a receptor.
A more complete and mechanistically relevant approach
should indicate both the nature of the key moieties and their
spatial relationship in the ligand, i.e., the ‘‘pharmacophore’’
required for both receptor recognition and activation. These
molecular properties comprise both steric and electronic
compounds and need not be the same since among com-
pounds that bind to a given receptor are those that do and do
not activate it, i.e., agonists and antagonists.

The term ‘‘pharmacophore’’ has many different mean-
ings, depending on (i) the type of biological end points used
to develop them, (ii) the properties incorporated into them,
and (iii) the strategies used to obtain these properties. For
example, to develop a pharmacophore for receptor recogni-
tion, binding data for antagonists only or binding data for
both agonists and antagonists must be used. In both cases,
common properties that are identified and characterized for
high-affinity compounds, that are absent for low- or no-
affinity compounds, relate directly to recognition. Only
when both agonists and antagonists are included in the data
set for hypothesis development will it be possible to also
obtain a pharmacophore that includes requirements for ac-
tivation and is hence different in some respects for agonists
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and antagonists. If, however, the pharmacological data being
used for hypothesis development involve binding data for
agonists only or are based only on agonist activity end
points, then the resulting pharmacophore will have com-
bined properties needed for both recognition and activation
and a clear distinction between them will not be possible.
Pharmacophores can also be divided according to the
different sets of molecular properties used to define them.
On this basis, the following ‘‘hierarchy of pharmacophores’”
can be delineated. Type A pharmacophores are based pri-
marily on conformational similarities, including (1) those
that consider maximum spatial overlaps only and (2) those
that incorporate implicit assumptions of key regions required
for recognition and activation and require these to overlap in
comparing structural similarities. Type B Pharmacophores
emphasize common electronic properties explicitly identi-
fied as determinants of recognition and activation and are
defined by the spatial arrangement of these moiety. This
type of pharmacophore can also be further divided into those
that (1) use the atoms themselves to represent the properties
found to be important and define the common spatial rela-
tionships among them or (2) use the properties themselves
instead of explicit atom types and establish the crucial steric
requirements among them. The most complete pharmaco-
phore would incorporate the requirements of this interactive
pharmacophore and better-defined dynamic requirements.

Strategies for Development of Type A Pharmacophores

To a certain extent, the biologically active conformation
of a given set of ligands may be obtained from a systematic
comparison of the molecular geometries of these compounds
interacting with the same receptor, using implicit assump-
tions about the elements considered to be essential for rec-
ognition. If the set contains both agonists and antagonists
and at least one essentially rigid analogue that can recognize
the receptor with a high affinity, then the task is much sim-
plified. In such a case, the characterization of the bioactive
form results from the identification of the conformation of
each ligand that maintains a similar spatial arrangement of
the elements considered to be essential for recognition found
in the right analogue. In other cases, when all analogues
show some degree of flexibility, then the bioactive confor-
mation must be identified by an interactive procedure that
attempts to determine which conformations of the ligands
permit a unique arrangement of the elements thought to be
important for recognition. In addition, the bioactive con-
former should encompass a spatial arrangement of the key
elements that other structurally similar, but low-affinity an-
alogues cannot achieve. In the event that a unique 3D ar-
rangement is found, it is selected as the bioactive conforma-
tion(s), i.c., the recognition pharmacophore for each ligand.
When more than one such arrangement is possible, new an-
alogues can be added to the data set, with the hope that some
of the candidate conformers can be eliminated, either be-
cause they are not accessible in a new high-affinity analogue
or because they are possible low-energy conformers for a
compound that is known not to bind to the receptor.

An example of this procedure is given by our search for
the candidate pharmacophore for a series of 8-selective opi-
oid peptides (16). In this study, a set of 12 related analogues
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was selected, 9 of them known to recognize the receptor and
3 with a low affinity. An extensive conformational search
procedure, described below, was carried out for each cyclic
peptide in the series. After the procedure was completed, the
results for each of the 12 compounds were compared. The
number of conformers found was very large, and only con-
formations that were within 5 kcal/mol of the lowest-energy
form for each peptide were considered. The use of an energy
cutoff can be rationalized as eliminating structures that are
not accessible at physiologically relevant temperatures.

In addition to the extensive comparison of conformers
for these analogues, an important ingredient in this pharma-
cophore development was the implicit assumption of key
regions required for peptide recognition of opioid receptors.
These were selected based on SAR studies that identified the
N-tyramine region and a second aromatic ring Phe* as cru-
cial moieties. Therefore, the goal was to identify a confor-
mation of high-affinity ligands with a similar spatial arrange-
ment of these two regions and to verify that no such confor-
mation existed for the three low-affinity ones. To this end,
three criteria were selected: (i) the distance between the cen-
ter of the Tyr' and the Phe* aromatic rings, (ii) the distance
between each of the two rings and the terminal-amine N
atom, and (iii) the overall RMS of the cyclicized portion of
the peptide. The third criteria represent a general steric re-
quirement for receptor recognition because it ensures that
when Tyr! and the Phe* are properly positioned, the remain-
der of the structure will not occupy significantly different
areas of a hypothetical receptor cavity. The result of the
comparison was that, one and only one conformation ful-
filled all of the above criteria.

Once a conformer was identified, graphical tools were
used to verify it. All graphical packages for molecular mod-
eling include the capability of overlapping atoms of different
molecules, at least in the approximation of keeping the mol-
ecules rigid. The graphics allows quick visualization of the
differences in the structures in both the critical and other less
critical regions of two superimposed ligands. The most ef-
fective means of choosing the most relevant overlaps be-
tween pairs of molecules is a combination of direct insight
obtained from such graphical presentation and use of math-
ematical criteria such as the root mean square of the devia-
tion.

For the nine high-affinity analogues, the Phe* and the
Tyr! occupied identical positions and the cyclized skeleton
‘‘spacer’’ between these was in approximately the same re-
gion. For the three low-affinity analogues, the same relative
orientations of the Phe* and the Tyr! were not possible. We
were able to understand the fundamental reasons why those
orientations of the Phe* and the Tyr® were not allowed in the
low-affinity analogues.

This study provides an example of the steps needed to
characterize one type of very flexible pharmacophore, which
heavily emphasizes steric similarity while implicitly impli-
cating specific regions in receptor interactions. One caveat
about this pharmacophore is that it could contain require-
ments for both receptor recognition and activation since af-
finities of only agonists were used in its development.

Another procedure that emphasizes structural overlap
combined with implicitly assumed key atomic regions is
called the active analogue approach (17). This approach also
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assumes that the presence of key regions are necessary but
not sufficient for recognition or activation. An additional
explicit steric element is added, namely, that the ligand
should fit into the available volume of the binding site of the
receptor and not overlap with an area that is occupied by the
receptor itself. Strategies used to define this allowed volume
of the ligand consider, in principle, all its accessible confor-
mations and not just the minimum energy one. Thus confor-
mational searches are combined with pairwise comparisons
of active ligands. The matching of the specific key moieties
and of the receptor-excluded volume are evaluated simulta-
neously for all conformations making this procedure very
computationally intensive. This procedure can be simplified
if a rigid analogue is used in the procedure. Important prop-
erties of this analogue are inferred rather than explored since
the type of calculated properties that could be important is a
computationally intensive exercise itself. Thus, while the
method can be extremely powerful, in practice, the compu-
tational demands make it applicable only with restrictions.
Not only are rigid analogues generally used, but important
properties are inferred rather than explored.

Strategies for Development of a Type B Pharmacophore

The two types of Type A pharmacophores just de-
scribed are based largely on conformational similarity but
include assumptions as to which types of moieties or atoms
should be regarded as essential for drug-receptor interac-
tions. Then the spatial arrangement of these components is
compared for the molecules under consideration and related
to the biological activity until, eventually, a pharmacophore
emerges. The assumptions made regarding the importance of
the chosen components can change as the model evolves.
The pharmacophore is expressed as a set of types of key
atoms and the relative distance and overlaps among them.

The primary use of conformational similarities and the
prior identification of atom centers important for drug recep-
tor interaction have a number of limitations. One limitation
of this class of pharmacophores is that there is ample room
for subjective decisions because it is based on observer-
defined choices of key atoms and moieties. In addition, it is
possible that both recognition and activation are driven by
factors other than maximum steric similarities such as key
electronic properties. Finally, many of these properties are
not centered on the atoms themselves but on the force fields
they generate. Thus, an improved approach would be first to
identify explicitly molecular properties important for recog-
nition and activation and then to use them to develop a phar-
macophore. In this approach, the molecular properties are
the descriptors used to identify key moieties. Typically, the
molecular electrostatic potential created by a molecule at a
specific point in the surrounding space is one such property
(18-20). A characteristic pattern of this property is then as-
sumed to be required for recognition. However, other prop-
erties, in addition to the molecular electrostatic potentials,
are related to ligand-receptor interactions and should be ex-
amined for their importance. The focus, then, changes from
the type A pharmacophore in two ways: (i) physical and
electronic properties are used as key determinants, and (ii)
pharmacophores are identified by the spatial arrangement of
these properties rather than of atoms that are independent of
them.
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The development of a Type B or interaction pharma-
cophore is based on explicit identification of molecular prop-
erties that are determinants of receptor recognition and in-
teraction rather than a prior assumption of them. In this
approach, a series of candidate properties is calculated and
compared to experimental end points in order to explicitly
select the important modulators of both recognition and ac-
tivation. It can be illustrated by studies made in our labora-
tory for ligands of the benzodiazepine/GABA 4 receptor (21).

The first step in these studies was the generation of
consistent experimental data on which to build the hypoth-
esis. To this end, the in vitro binding affinity and in vive
anticonvulsant profile for a series of 15 compounds from five
chemical classes were determined. In a parallel effort, theo-
retical studies were made for the same compound starting
with a conformational analysis followed by a calculation of a
series of physical and electronic properties that could be
indicators of specific types of ligand-receptor interaction.
The total and regional partition coefficients, a property di-
rectly related to the ability to participate in hydrophobic
interactions with the receptor, were evaluated using an
atom-based parametrization that permitted the characteriza-
tion of hydrophobic centers. Among the electronic proper-
ties calculated were the nature and energy of the highest
occupied and lowest unoccupied molecular orbital and
atomic polarizabilities, related to the ability of the molecule
as a whole, and of regions in particular, to be involved in an
electron transfer interaction with the macromolecule as ei-
ther donor or acceptor. In addition, the ability of different
proton-accepting center of the ligands to interact with a com-
plimentary proton-donating center of the receptor was com-
puted, as the difference between the heat of formation of the
neutral species and the protonated ligand. This property was
computed for all possible centers, without any presumption
regarding the most favorable center. To some extent, the
heats of protonation replaced the molecular electrostatic po-
tential in defining regions for interaction with charged cen-
ters.

In the next step, using the computed properties for each
conformer of each ligand, distances between moieties with
certain properties, rather than between particular atoms or
group of atoms, were calculated and compared. This dis-
tance table provided the initial basis for the definition of the
pharmacophore. The tables were searched for patterns com-
mon to all ligands, regardless of their activity profile. Two
strong proton-accepting centers were found to be located 3.5
A apart for all ligands, including agonists and antagonists
even for inverse agonists compounds with significant struc-
tural differences. This common feature was therefore de-
fined as a requirement for recognition and a common com-
ponent in the pharmacophore for all types of compounds. In
addition, the position of the most lipophilic center, as deter-
mined using a single geometric parameter, the angle from the
center of the lipophilic area to the closest proton acceptor to
the more distant proton acceptor, appeared to discriminate
among agonists and antagonists/inverse agonists. Such a def-
inition allowed the pharmacophore to be described in terms
of a specific 3D relationship between probable types of in-
teractions with the binding site cavity instead of in terms of
specific atoms or structural elements. It is hence readily gen-
eralizable to structurally diverse compounds. It must also be
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noted that, because of the properties that are computed, the
interaction pharmacophore is the only one that provides
clues regarding the mechanism of interaction and/or activa-
tion of the receptor.

The Complete Pharmacophore

The major deficiency of the interaction pharmacophore
is that general steric requirements, beyond those determined
by the specific relationship of the recognition and activation
regions, are not readily determined. The active analogue ap-
proach could, in principle, supply this missing steric com-
ponent if it is used together with strategies that first identify
the specific molecular properties required for recognition
and activation, as was done for the BDZ ligands, rather than
assuming such properties. Thus, combinations of these two
approaches, the development of an interaction pharmaco-
phore followed by active analogue comparisons, while com-
putationally and labor intensive, could, in principle, lead to
the most complete pharmacophore.

Undoubtedly, as computational resources grow, the
pharmacophore based on the active analogue approach will
be able to include some of the properties computed to de-
velop an interaction pharmacophore.

3D-QSAR

A three-dimensional QSAR, called comparative molec-
ular field analysis (COMFA), assumes that steric and elec-
trostatic forces determine the nature of the ligand-receptor
interactions (22,23). It uses the molecular electrostatic po-
tential as the key property in the development of a pharma-
cophore without any evidence that it is a key modulator of
either recognition or activation for the systems under con-
sideration. Since this property depends on the shape of the
compound, the method requires that a set of molecular over-
laps be deduced by an independent method, such as the
active analogue approach, thus satisfying the steric require-
ment. Around a set of overlapped molecules, a cubic grid is
placed within which the electric field that each molecular
would exert upon a probe atom placed at each lattice point is
calculated. The value of the MEP at each of those points in
the grid is then used in a linear regression equation. To ex-
tract a stable QSAR from this severely overdetermined sys-
tem requires the use of a special mathematical tool, called
the partial lease-squares (PLS) method. The PLS statistics
permits the determination of a linear expression (3D-QSAR)
which has the minimal set of lattice points that reproduces
the measured activity of the set of compounds used. As in
any linear regression procedure, once the equations have
been deduced, they can be tested for their predictive utility.
Cross-validation is normally used for this purpose. In simple
terms, cross-validation is done by omitting compounds from
the set used to develop the original equation and predicting
the activities of these excluded compounds using it. This
analysis is repeated with a randomly chosen subset of com-
pounds excluded and used to test the resulting equation. The
position in space of the most poorly predicted compounds is
modified, the field is recomputed, and the PLS equations are
rederived. The procedure is terminated when a satisfactory
value of the cross-validation parameters is achieved. The
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overall validity of the 3D-QSAR relies heavily on the cross-
validation procedure.

There are several drawbacks to the COMFA method
(22). First, the results are very dependent on the initial mo-
lecular overlaps chosen. Second, despite the use of PLS
methods, the system of equations remains inherently unde-
termined. Almost certainly, other QSAR equations equally
consistent with any set of compounds could be found. Third,
the COMFA analysis will fail when a few molecules, all very
dissimilar from the rest, are included in the set, because of
the impossibility of predicting the behavior of the dissimilar
molecule from the others. In this situation, the PLS proce-
dure can derive equations for which there is a much higher
risk of chance correlation. Finally, in common with all
QSAR procedures, it can be used only to predict numerical
values of the same biological activity that is used to develop
the equations, and not to characterize general molecular de-
terminants of recognition and activation.

Strategies for Obtaining 3D Models of Receptors

The indirect methods described in the previous sections
to identify and characterize molecular determinants of re-
ceptor recognition and activation are required because of the
lack of a three-dimensional structure for the target macro-
molecule, usually a protein. Once these determinants are
characterized, they can, however, be used in two different
ways to begin to develop a 3D model for the receptor to
which they bind. These emerging capabilities have the po-
tential to bridge the gap between indirect and direct methods
of drug design since, if successful, the design process can
continue in a direct mode using explicit characterization of
drug-receptor interactions.

One such procedure is to search for a surrogate protein
with a known structure that permits the explicit docking of
ligands (24). Once the spatial relationship between elements
required for recognition and those required for activation are
determined, a search can be made for a protein with sites
complementary to this ‘‘interaction pharmacophore’’ in the
protein structure database. If such a protein model is found,
then it can be used to characterize explicitly the receptor—
ligand interactions.

In addition to the search for heuristic receptor models,
anew type of receptor model building is emerging. These are
the models for the seven-transmembrane helical segments of
G-coupled receptors built based on the structure of bacte-
riorhodopsin (25,26). Bacteriorhodopsin is a membrane-
bound protein with seven transmembrane helical regions,
now thought to be a common feature of all G-coupled recep-
tors. Hence, efforts are being undertaken to build models for
this portion of the receptors via homology modeling. Unfor-
tunately, the homology between bacteriorhodopsin and any
G-coupled protein, including the other opsins, is extremely
limited even in the seven-helical segments, and therefore, it
is not a simple task. Moreover, in addition to the extensive
problems of modeling a protein from another that does not
have any significant homology, the problem is compounded
by uncertainties in the organization of the helices them-
selves. Although difficult, construction of even approximate
3D structures for these transmembrane helices is an effort
that is worth undertaking. Helpful additional information is
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emerging, such as candidate ligand binding sites and the ef-
fects of point mutation on ligand recognition. Again, detailed
knowledge of the ligand interaction pharmacophore will be
helpful in this approach. As the models develop, they can be
refined based on the molecular biology data, and they can
provide valuable insights into receptor-ligand interaction, as
well as guidance for future experimental work in the design
of mutants.

HYPOTHESIS VALIDATION AND DESIGN OF
CANDIDATE DRUGS

In the preceding sections, the different approaches to
determining the relationship between molecular properties
and drug activity were described. Here, we briefly mention
two different approaches to the next step, validation of the
hypothesis developed and use of them for drug design.

In the classical 2D-QSAR mode, the validity of the re-
gression equations obtained can be tested by using them to
predict the specific biological end point under consideration
for a series of compounds with known activity. Then the
possibility that novel compounds might have this activity
can be directly tested by using the same regression equation.
The only additional effort required is that of evaluating each
of the properties used as independent variables in that equa-
tion. These compounds can then be acquired or synthesized
and tested for that end point. The appeal of this method is its
simplicity and the ease with which the screening of new
candidate compounds can be done. The disadvantages are
that (i) it predicts a value only for a single given end point,
i.e., a receptor affinity of biochemical or behavioral activity;
(ii) it is best used with closely related congeners since e€x-
plicit 3D criteria are not included; (iii) the reasons for failures
are not clear—For example, if an end point is activity, is the
failure due to lack of recognition or activation?—and failures
cannot be used to refine the equation; and (iv) it cannot be
used to distinguish qualitatively different behavior, i.e., ag-
onism from antagonism.

The other approaches to hypothesis or pharmacophore
development discussed all have a 3D component of some
kind. If these pharmacophores can be described by a set of
geometric parameters, i.e., distances, angles, and torsion
angles among key moieties (static) or properties (interactive)
in the pharmacophore, then two approaches can be used to
design new analogues that, at the same time, can test these
hypothetical requirements for receptor recognition and of
activation, if separate pharmacophores have already been
developed for agonists and antagonists.

The first is the traditional approach of suggesting new
analogues for synthesis which are variations of the families
used to develop the hypothesis. For example, if require-
ments for recognition of a given receptor subtype are de-
duced, variations of known analogues can be suggested that
would confer or increase receptor affinity at that subtype. If
molecular determinants of activation of a given receptor
have been developed, then these can be used to propose
compounds for synthesis in the same chemical families that
will have qualitatively different, i.e., agonist, antagonist, or
even inverse agonist, activity at a given end point. Synthesis
and testing of proposed congeners both would provide hy-
pothesis validation or refinement and also could lead to a
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promising new drug. The main drawbacks of this route are
that promising compounds can be very difficult to synthesize
and they are usually structurally related to the known chem-
ical families used for hypothesis development.

The recent development of both 2D and, especially 3D,
relational data bases and strategies to search them with user-
provided criteria has provided a potentially efficient alterna-
tive to immediate synthesis for hypothesis validation and
drug discovery (27-29). A 2D chemical data base is defined
by its capability of storing and retrieving information based
on a 2D chemical structure, i.e., its connectivity for all en-
tries. The 2D information ensures that only one representa-
tion is associated with each entry. The connectivity table
then constitutes the identifier (1D type) for a given com-
pound. The 1D type is then use to recover chemical and
pharmacological information stores as data types. Three-
dimensional structural information can be included as an ad-
ditional data type in a 2D data base, thus generating a 3D
data base.

The 3D databases can be searched (30,31) to retrieve all
compounds with user-provided stereochemical criteria that
define the spatial relationship between all key moieties or
properties deduced from pharmacophore development as es-
sential modulators of receptor recognition or activation. De-
pending on the level at which this pharmacophore was de-
veloped, these criteria would involve different combinations
of steric, electronic, and hydrophobic properties and be use-
ful for either receptor recognition or activation or both. The
3D criteria can also be relaxed to corresponding 2D-level
input. In this case, types of atoms, as well as the group that
separates them (the spacers), have to be specified. At the 2D
level, a chemical data base could be used to retrieve all
compounds that have these characteristics.

Searching of a 3D data base is a better tool for the pur-
pose of identifying novel leads, since the criteria provided
need not involve connectivity or the specification of any
specific atoms, functional groups, or other moieties. Thus,
this procedure could retrieve a list of structurally and chem-
ically diverse compounds that satisfy the criteria. Among
them would be compounds known to have the property for
which the criteria were developed but were not included in
the data set for hypothesis development. The retrieval of
such compounds then constitutes hypothesis validation. In
addition, this search can retrieve structurally diverse com-
pounds not known to be ligands for the particular receptor
system under study and, hence, provide novel leads for new
drugs. The 3D data bases and 3D searching capabilities have
been extensively described in the literature.

Many of the compounds that are retrieved based on an
initial hypothesis, when tested, will not express the desired
profile. The compounds that fail to express the pharmacol-
ogy expected can, however, be used to refine the working
hypothesis in the sense shown in Fig. 1, hopefully leading to
more stringent search criteria that would result in fewer can-
didate structures and, ultimately, to promising new thera-
peutic agents.

PROPERTIES AND METHODS (32)

Conformational Analysis

In order to derive any pharmacophore or perform 3D-
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QSAR, it is necessary to have knowledge of the three-
dimensional structures accessible to the drug molecule so
that these can be compared in order to deduce which, among
these structures, is the form that is recognized by the recep-
tor, i.e., its bioactive form. The ideal set of compounds on
which to base the development of a pharmacophore for a
given receptor would be rigid agonists and antagonists, since
such drugs interact with the receptor in a clearly defined and
unique form, making the task of deducing common proper-
ties required for both recognition and activation easier.
However, ligands of most receptor families vary enormously
in their conformational flexibility, and the task of obtaining
their conformational profile is progressively more challeng-
ing the more flexible the ligand. Another complication for
flexible ligands is that they do not necessarily interact with a
macromolecular target either in their lowest-energy form, in
their crystal structure, or in their most abundant structure in
solution.

The first step in deducing the bioactive form in which
flexible ligands, such as peptides, recognize a given receptor
is to perform a thorough search of conformational space of
each analogue in the set chosen for hypothesis development.
This analysis of conformational space is required to deter-
mine the low-energy structures accessible to each compound
and can be performed only using the techniques of compu-
tational chemistry. The bioactive form should be closely re-
lated to one of these conformations. While X-ray crystal
structures or NMR solution conformations are helpful in val-
idating the results of conformation search procedures used,
they cannot, in general, provide this crucial information. Be-
cause of the crucial role of computational chemistry in this
first step of pharmacophore development, a description of
conformational search strategies is described, with emphasis
on recently developed algorithms that have proven to be
effective for flexible ligands such as peptides.

Recently, a number of novel approaches have been de-
scribed in the literature (33-47), focusing mainly on obtain-
ing the global or lowest energy minimum for a flexible ligand
that has multiple minima with varying relative energies (Fig.
2). While this information is necessary to characterize the
conformational profile, it is not sufficient, since, as already
stated, the bioactive form need not be the global minimum of
a given ligand, but only one that is relatively energy acces-
sible from it. Thus, other strategies, including those devel-
oped in our laboratory, have been designed to identify both
the global minimum and many other local minima.

The most straightforward approach to the identification
of multiple minima is to perform nested rotations involving
systematic rotation of all flexible torsion angles. In principle,
this approach guarantees that all the minima will be found,
provided that a small enough step is used to increment each
torsion angle. In practice, however, this procedure rapidly
becomes impractical, as the number of torsion angles to be
scanned increases, since the number or conformations to be
generated varies with the power of the number of variables.
Therefore, other methods, such as random sampling or
Monte Carlo methods, have been used and details of these
can be found in the recent literature.

We wish to describe here an alternate strategy we have
recently developed using molecular dynamics procedures.
This use of molecular dynamics (48-50) in general is based
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Fig. 2. Potential energy of an arbitrary molecular system as a func-
tion of an internal degree of freedom. Given a starting point on the
surface such as S1, many algorithms permit the closest downhill
minimum to be found. However, no method can find M2 starting
from M1 or any other point in its domain such as S1. Similarly,
starting from S3, only M3, and starting from S4, only M4, can be
found. These procedures are called energy minimization algorithms.

on the idea that increasing the energy of the molecule by
assigning each atom a random velocity can be done in such
a way that the energy content of the molecule allows it to
escape from the energy minima in which it is trapped, obey-
ing Newton’s laws. From Fig. 3, it should be easy to under-
stand why it can be used to locate many minima in confor-
mational space, when combined with energy minimization
techniques.

The variation of the molecular dynamics procedures
outlined in Fig. 2b that we have developed has been applied
both to linear peptides, specifically the endogenous opioid
peptide met-enkephalin (51), and to a series of cyclic pep-
tides with a high specificity for one of the opiate receptor
subtypes, the 8 receptor (16). These two systems were cho-
sen because of their usefulness, each in a different way, in
validating the procedures used. The conformational behav-
ior of met-enkephalin has been the subject of extensive in-
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Fig. 3. In molecular dynamics, we can, starting from a low-energy
point on the potential surface, provide energy to the molecule until
it reaches a certain value dependent on the temperature of equili-
bration chosen and, then, let the system of atoms follow Newton’s
law in a classical manner. Along the trajectory, we can collect the
coordinates (C1, C2, C3) of that point and use them as starting
points in an energy minimization procedure.
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vestigations using diverse theoretical methods. Thus, we
wished to test the power of our strategy by comparing it with
the results from other procedures. The structures of the cy-
clic peptides have been studied by 2D-NMR and compari-
sons of low-energy structures from our search strategies
with those deduced from NMR presented another opportu-
nity to validate them.

The strategy investigated consisted of iterative cycles of
high- and low-temperature molecular dynamics interspersed
with energy minimizations. The rationale for combining
high- and low-temperature molecular dynamics is illustrated
in Fig. 4. The high-temperature simulations allowed the sam-
pling of many local minima. The low-temperature simula-
tions allowed the refinement of the structures.

To initiate this procedure, for the linear peptide, initial
conformations were generated by systematic nested rota-
tions of the backbone angles. The lowest-energy structures
found by this procedure were then subjected to high-
temperature molecular dynamics simulations at 900 K for 75
psec., during which the coordinates of 300 points were
stored and energy minimized. The lowest-energy structure
found by these means were then heated to 300 K. Along this
trajectory, structures were also collected and energy mini-
mized, completing the first cycle. The next cycle was begun
by subjecting this new set to high-temperature molecular
dynamics. The procedure was continued alternating high-
and low-temperature molecular dynamics interspersed with
structure collection and minimization, until no new low-
energy structures were found.

To determine if the high- and low-temperature molecu-
lar dynamics procedure led to a reliable set of conformations
for met-enkephalin, we compared the multiple minima found
by us and those reported for this peptide using other meth-
ods for conformational searching. Our technique found all

E,

Arbitrary Energy Units

g

R V.

Arbitrary Coordinates

Fig. 4. Potential energy surfaces are considerably more complex
than represented in Figs. 2 and 3. Indeed, they are N-dimensional,
and therefore, a bidimensional cut will have additional saddle and
other stationary points. At a high temperature, the energy of the
molecule is also higher, which allows it to overcome numerous bar-
riers, but since its motions are faster, it can significantly lose part of
the detail of the potential surface. Ten points collected at equal
intervals at a high temperature cover a larger portion of the confor-
mational space than an equal number of points at a lower tempera-
ture during a similar interval. At a lower temperature, the system is
confined to a smaller portion of the space determined by the energy
barriers it cannot overcome, providing more refined details.
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families of conformational domains that had been reported in
the literature and some that had not been previously re-
ported. This result reinforced our confidence in the search
strategy developed as an effective means of scanning the
conformational space of short linear peptides.

The study of the cyclic opioid peptide, DPDPE, using a
search strategy similar to the one outlined above for met-
enkephalin, allowed the further validation of this procedure.
For DPDPE, there is abundant experimental structural in-
formation derived from NMR data. Application of the above
method, using environmental conditions similar to those
used in the NMR studies, yielded a lowest-energy conformer
that had all the structural characteristics determined from
the NMR studies. Among the consistent characteristics
found were the following: (i) all the interproton distances
determined by NOE experiments were satisfied by this con-
former within the experimental error; (ii) the populations of
the rotamers for the side chains were in agreement with the
highest-quality NMR data; (iii) the most buried NH proton in
the predicted structure was also the one that, in the NMR
studies, had a frequency with the smallest temperature de-
pendence, an indication that it was the only one not exposed
to the solvent; and (iv) a short distance between the disulfide
bond and an aromatic ring was found both in the predicted
structure and in the NMR conformer. In summary, the low-
est energy conformer deduced ‘‘de novo™ by our search
strategy, without use of any experimental information, was
able to reproduce all the characteristics that were experi-
mentally observed for the conformation found in solution.
While any one of these characteristics in the 2D-NMR spec-
tra could perhaps be found in other conformers, the fact that
it satisfies all experimental data increases our confidence in
the methodology used.

Computational Methods

Thus far, the basic strategies for indirect drug design
using the techniques of computational chemistry, together
with experimental pharmacology, have been discussed.
Drug design is possible in these circumstances; although the
3D structure of the receptors may not be known, the types of
molecular properties of the ligands determine ligand receptor
interactions. Drug-receptor interactions depend on hydro-
phobic effects, dispersion forces, induction forces, electro-
static forces, ion-induced dipole interactions, ion-permanent
dipole interactions, hydrogen bonds, ionic bonds, electro-
static repulsion, and steric hindrance (14). All these forces,
except the hydrophobic and steric effects, require knowl-
edge of the electronic structure of the molecule.

The fundamental laws describing the hydrophobic inter-
actions are not fully understood yet. Estimates of the oc-
tanol/water partition coefficient or related hydrophobic indi-
ces of the ligand, derived using different parametrizations,
are thought to be determinants of this type of interaction
with receptors. These properties can be measured or calcu-
lated.

Steric properties, including conformational searches,
can be done using either molecular or quantum mechanical
methods, or a combination of both, while all electronic prop-
erties, upon which a description of the ability of the ligand to
interact with a receptor of unknown structure is based, can
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be computed only using quantum mechanical methods. A
description of the main features of these two types of meth-
ods is given below.

Molecular Mechanics (52-54)

The molecular mechanics, also called ‘‘empirical en-
ergy”’ or ‘‘force field”” methods, are based on the idea that
the forces to which atoms in a molecule are subjected can be
described in classical terms. This is a pragmatic approach
since it is known that these forces are determined by the
principles of quantum mechanics. However, this approach
has proven reliable when carried out with extreme care.

A generic empirical energy potential has the form

E

total — Estretching + Ebending + Etorsional

+ Eelectrostatic (+ Ehydrogen bond)
+ E.

steric

In the model system, all atoms are represented as
spheres, with van der Waals radii. The interactions between
the bonding atoms are described by bond stretching, bend-
ing, and torsional potentials. Most molecular mechanics
methods assume that E,, . cping 8 Epending are governed by
a Hook’s law term, i.e., that the forces that describe the
chemical bond are harmonic. However, there are major ef-
forts under way to develop methods containing nonharmonic
terms. These second-generation force fields also contain
cross terms, which would be higher-order terms. The MM3
(55) and the CVFF-89 (56) force fields belong to this class.
The torsional energy, assuming a rigid rotor model, is com-
posed of three periodic terms. The nonbonding, E,. ., term
is represented by a Lennard-Jones model potential. The
electrostatic term most commonly used is Coulomb’s law.
However, in some potentials, such as MM2 (57) and MM3
(54), bond—dipole-bond—dipole interactions are used to cal-
culate the electrostatic components. Some empirical energy
expressions also contain a hydrogen bond term.

Using empirical energy expressions, the total energy of
a molecule can be computed analytically. There are several
methods that permit the minimization of the total energy as
a function of the internal coordinates, which permits the
localization of the resting states of the molecule or minimum
energy structures.

Several force fields are currently in wide use, such as
those embodied in the AMBER (58,59), CHARMm (60,61),
CVFF (56), and TRIPOS (62) and the MM3 suite of programs
for peptides, nucleic acids, and small molecules. In addition,
some of the pioneering work on the representation of pep-
tides, using molecular mechanics methods, was done using
the ECEPP potential (63), which lacks the stretching and
bending terms in it.

The ability of the approach to describe molecular struc-
ture rests on the set of parameters contained in each term.
For instance, for each bond in the molecule, in the harmonic
approximation, there are two parameters required to de-
scribe the stretching term: the spring constant and the spring
length (bond length) in a resting state. The number of pa-
rameters required to obtain a reliable description of a me-
dium sized molecule is large, and thus, parameter develop-
ment for a molecular mechanics method is a major under-
taking.
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Because of the significant effort that developing one of
these potentials represents, most of them started by focusing
on application to a particular type of molecular systems.
However, all these force fields contain approximately the
same terms in the potential and, therefore, could potentially
be applied to any system with an adequate parametrization.

Quantum Mechanical Methods

In contrast to the molecular mechanics approach, which
is phenomenological, quantum mechanical techniques are di-
rectly derived from the physical principles that govern the
molecular structure, by solution of the stationary Schro-
dinger equation in an approximate manner. Briefly, the tech-
niques can be divided into ab initio and semiempirical meth-
ods (65). While ab initio methods do not resort to parame-
trization to solve this equation, semiempirical methods
contain parameters that avoid the computation of some time-
consuming integrals required in ab initio procedures. More-
over, the semiempirical techniques consider only the va-
lence electrons, i.e., those in the outer atomic shells. The
parameters used are far fewer and less intuitive than those
used in molecular mechanics methods. Both methods pro-
vide a wave function from which all electronic properties can
be computed as expectation values.

The appeal of quantum mechanical methods is that they
can, in principle, be used to calculate the entire range of
properties that are necessary to understand the characteris-
tics of the ligand that allow recognition and activation of
receptors. However, these techniques are computationally
intensive and require significantly more expertise for the in-
terpretation of the data than do molecular mechanics meth-
ods.

Among the semiempirical methods, those developed by
Dewar, Stewart, and co-workers are the most popular (66).
The different variations of these methods MNDO (67), AM1
(68), and MNDO-PM3 (69), and MNDO-H (70) indicate dif-
ferent treatments of the multicenter integrals that are re-
tained.

Ab initio methods do not contain parameters and, in
most cases, the simplest level can provide the information
required for drug design. However, the description of the
atomic orbitals that define the spatial distribution of the elec-
trons have different degrees of accuracy and reliability. The
ab initio packages HONDO (71,72) and GAUSSIAN (73) are
the most popular. It should be stressed that all the ab initio
packages, in principle, have the capability of giving exactly
the same results for the same system and the differences
among them are secondary, such as speed, a major concern
with ab initio calculations, ability to calculate certain prop-
erties, or ease of input preparation.

CHALLENGES FOR THE FUTURE

Computer-aided drug design is not governed by the
clear-cut rules of engineering, and hence, these methods do
not produce a finished product by a fully prescribed proce-
dure in the same sense that CAD can produce other goods.
The limitations of the rational computer-aided drug design
approach arise because of the complexity of the biological
processes involved in drug action at the molecular level and
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the level of approximation that must be used in describing
their molecular properties.

Perhaps the most important challenge on the computa-
tional side relates to the inability of the current methods to
provide a description of the molecular properties beyond the
intimate complex between the ligand and the receptor. In
particular, two additional capabilities would help improve
the insights obtained. One advantage would be more fre-
quent inclusion of solvent effects in developing criteria for
drug-receptor interactions (74-78). An example of how this
missing insight could impact on drug design can be cited. It
is possible that congeners have been identified that by all
criteria used are a perfect match for the receptor. However,
their high affinity for the solvent could prevent them from
having any significant interaction with the receptor. A num-
ber of different theoretical techniques for including solvent
effects are in current development. Solvent effects can be
treated using explicit water interaction via computation of
the free energy of solvation, using statistical methods such
as Monte Carlo or sampling in a molecular dynamics trajec-
tory. Alternately, the molecules could be embedded in a
continuum dielectric and some implementation of the Born
equation could be applied.

Another aspect that still remains to be symmetrically
included is the computation of free energies as opposed to
potential energies of interaction (79-82). While molecular
methods emphasize the importance of the internal energy,
the free energy of a process is the fundamental quantity that
determines its feasibility. For direct methods, in which the
3D structure of the macromolecular target is known, free
energies can be calculated using free energy perturbation
methods. In indirect drug design, even when there is no such
structure, computation of free energies can be useful in sev-
eral stages of analysis, for example, it can be used as a more
refined criteria for choosing the most favorable conformers
of a flexible ligand and for calculating their interactions with
solvent.

Despite all the approximations made in its current ap-
plications, the techniques of computational chemistry have
proven successful in helping to identify promising leads for
novel families of compounds. The number of compounds
that need to be synthesized or evaluated in preclinical phar-
macological assessment can be greatly decreased using these
procedures, compared to the totally empirical method of
drug discovery. These techniques should be used in the mul-
tidisciplinary and iterative environment, illustrated in Fig. 1,
to have the best chance of successful convergence to a clin-
ically useful therapeutic agent.
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